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ABSTRACT 

This paper examines the use of the extended Kaiman filter for estimating 

various quantities in typical interceptor-target engagements. The extended 

Kaiman filter is used to estimate the relative position of the target, the relative 

velocity of the target and the vector perpendicular to the target velocity. The 

target is assumed to be non accelerating. The target is observed via range and 

bearing measurements and it is assumed that the interceptor's own velocities 

are known. 

The performance and stability of the extended Kaiman filter are examined 

under a variety of initialisation errors, engagement configurations, and mea- 

surement noise variances. Simulation studies demonstrate that the required 

quantities can be estimated but that the performance of the filter is dependent 

on the configuration of the engagement. 
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Filtering for Precision Guidance: The Extended Kaiman 
Filter 

EXECUTIVE SUMMARY 

This paper examines the use of the extended Kaiman filter for estimating various quan- 

tities in a typical interceptor-target engagement. The quantities estimated are required 

for the purposes of precision guidance. New tactical demands of missiles require advanced 

guidance and control methodologies. These new control methodologies require more in- 

formation about the target than is available using existing target tracking algorithms. In 

the simplest terms, new precision guidance control objectives require knowledge of the 

missile impact angle on the target in addition to the more traditional information about 

the target's relative position and velocity. This new requirement makes re-design and 

re-evaluation of the extended Kaiman filter necessary. 

In a typical interceptor-target engagement, the information required to successfully control 

the interceptor needs to be estimated from radar and inertial measurement unit (IMU) 

observations. The extended Kaiman filter is a generic algorithm that can be used in this 

situation to estimate the required information. Unfortunately, this target tracking esti- 

mation problem is notoriously difficult and the performance and stability of the extended 

Kaiman filter needs to be examined extensively prior to use. 

In this paper the extended Kaiman filter is applied to the interceptor-target problem 

and its performance is examined via simulation studies in a variety of situations. An 

understanding of the performance of the extended Kaiman filter for target tracking will 

enable a more thorough and efficient response to Australian Defence Force requirements 

for assessment, evaluation, advice and modification of weapon systems. 

m 
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Notation 

xj, yf, uf, vf, af and bf    x-y components of target's position, velocity 

and acceleration, respectively. 

xi, y(, uT
t, v[, a\ and b\ x-y components of interceptor's position, velocity 

and acceleration, respectively. 

xt, yt, ut and vt x-y components of relative position and velocity, respectively. 

Zk measurements. 

[üu vt) vector perpendicular to (ut, vt) with magnitude {u{, v\). 

VT and Vi magnitude of the target and interceptor's velocities, respectively. 

a the ratio of Vi and VT- 

Xt and Xk the relative state in continuous and discrete time, respectively. 

6j and Bf the target's heading angle and the bearing to the target, respectively. 

u)UioJ,lon9 and <J[M noises used to model target accelerations. 

wf,w6
k,Wk and n^ model observation noises. 

A, B, C and G system matrices. 

o-k(•), h (•) and ck (.) non-linear system functions. 

Ak,Bk and Ck linearisation matrices. 

Qk,Rk, Q% and Rk noise and Pseudo noise covariance matrices, respectively. 

Xk\k-i and xk-i\k-i extended Kaiman filter state estimates. 

Pk\k-i and Pk-i\k-i extended Kaiman filter covariance estimates, 

h sampling period. 
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1    Introduction 

Precision guidance of weapon systems is a computationally and conceptually demanding 

problem. In the past, linear control methods have been applied with some success to 

design controllers that minimise the miss distance between the target and the interceptor. 

The advances in computational hardware and changes in defence requirements have re- 

sulted in an increased need (or desire) for more precise performance from weapon systems. 

Recently, a precision guidance problem has been proposed that involves ensuring not only 

the miss distance is minimised but also that the angle of impact is controlled to a desired 

impact angle. Controlling an interceptor to a desired impact angle requires access to more 

information than is needed by traditional minimum miss-distance controllers. This paper 

examines the use of the extended Kaiman filter to provide the information required by the 

precision guidance law proposed in [2]. 

The most famous and commonly used assumptions are that the system is Gauss-linear and 

that the noises are Gaussian. Under these system assumptions, the Kaiman filter is the 

optimal filter for estimating system states [1]. Because the Kaiman filter is optimal (in a 

minimum mean square sense) and finite dimensional (the probability density function can 

be represented by a finite number of moments), it has been applied to a large variety of 

filtering problems. The continuing success of the Kaiman filter in many applications has 

encouraged its use even in situations where the underlying system is clearly non-linear. 

Apart from the Kaiman filter, there are very few finite-dimensional optimal filters for 

stochastic filtering problems. For general non-linear problems, when an finite-dimensional 

optimal filter is not possible, sub-optimal numeric or approximate approaches must be 

used. The simplest approach is to linearise the non-linear model about various operat- 

ing points and perform filtering with the extended Kaiman filter (a generalisation of the 

Kaiman filter). Details of the extended Kaiman filter (EKF) are given in this paper as 

well as some recent stability results that establish under which conditions the extended 

Kaiman filter will provide a reasonable filtering solution. 

In a typical interceptor-target engagement, measurements of the target are relative range 

and bearing to the target. These measurements are non-linearly related to the relative 

position and velocity of the target in cartesian co-ordinates.   The Kaiman filter is not 
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appropriate for this filtering problem because of the non-linearity in the measurement 

process (even if the state dynamics of the target are approximated as being Gauss-linear). 

However, after appropriate linearisation, the extended Kaiman filter can be applied to the 

target tracking state estimation problem. 

The target tracking problem in this paper is more difficult than tracking problems pre- 

viously solved using an extended Kaiman filter because the precision guidance control 

problem requires information in addition to the usual target location and velocity in- 

formation. To enable estimation of this additional information, we assume that radar 

measurements (ie. relative range and bearing) and the interceptor velocity in an absolute 

reference frame are measured. We show that measurement of the interceptor velocity is 

required to ensure the desired target state information is observable. 

The stability and performance of the extended Kaiman filter is known to vary significantly 

for different state estimation problems. We examine the stability and performance of the 

filter through both theoretical results and simulation studies. The error performance of the 

filter is also evaluated for a variety of initialisation conditions, engagement configurations, 

and measurement noise variances. 

The paper is organised as follows: In Section 2, the target tracking problem considered 

in this paper is presented. Both continuous time and discrete time equations are given to 

describe the dynamics and the measurement process of the engagement. A typical engage- 

ment configuration is presented to demonstrate a likely encounter. Then, observability of 

the filtering problem is discussed. In Section 3, the extended Kaiman filter is presented 

and applied to the target tracking problem presented in the previous section. Stochastic 

stability results for the extended Kaiman filter are then presented and applied to the target 

tracking problem in a typical engagement. In Section 4, some implementation issues are 

discussed before simulation studies are presented in Section 5. These simulation studies 

examine the stability and error performance of the extended Kaiman filter. Finally, some 

conclusions are given in Section 6. 
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2    Application: Target Tracking 

In this section we present the target tracking problem which is a companion to the precision 

guidance control problem considered in [2]. For simplicity, at least partially justified by 

the separation principle [12], we separate the tracking problem from the control design 

problem, and assume that no control action is performed. The results presented in this 

paper can be applied to the control problem by adding a measured input signal for the 

interceptor dynamics. 

The terminal phase of a interceptor-target engagement is described below. 

For simplicity consider an engagement defined in continuous time and let the following 

definitions be in a 2-D Euclidean frame. Let (xf,yt
7) and (zf,yf) be the position of the 

interceptor and target respectively where the subscript t > t0 denotes time. Then let 

{u\yt), (uf,uf), {al,bl) and (af,&f) be the velocity and acceleration of the interceptor 

and target respectively. Also define {üt, vt) to be the vector perpendicular to (uf, vf) with 

the same magnitude as {v!t,vl). To create this perpendicular vector define the following: 

YL 

ß   :=   ja 

a ■■= vp   i:" 
da 
dt 

(1+C*2 and 

(2.1) 

where Vj := ^W? + K)2 and VT ~ J(ut)2 + (VT)2- 

Observations of the engagement are commonly related to the relative dynamics of the inter- 

ceptor and target so we introduce the following state variable, Xt := [xt, yt, uuvt,üuvu at , bt ]', 

where xt := xf - x\ etc. and / denotes the transpose operation. 

The dynamics of (üt, vt) are given in [2], hence the dynamics of the state can be expressed 

as follows: 

dXt 

dt 

0 0   10   0   0   0 0 
0 0   0   10   0   0 0 
0 000001 0 
0 0   0   0   0   0   0 1 

dXt 

dt 

0 0 0 0 ß -7 1 -a 
0 0 0 0 7 ß a 1 
0000000 0 
0000000    0 

=   AXt + But + G{Xt)ujt 

Xt + 

0 
0 

-1 
0 
0 
0 
0 
0 

0' 
0 
0 
-1 
0 
0 
0 
0 

H 

0 0 
0 0 
0 
0 
0 

0 
0 
0 

T,long 

T,lat 

0 
cos öf 
sin of 

0 
-sin of 
cos öf 

(2.2) 
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whereof = tan_1(t;f/uf) is the target heading angle, ut := [a^bl]', andwt := [uJ,long ,u%M} 

Although target acceleration is deterministically controlled by the target, in this model the 

target acceleration has been approximated by a "jinking" type model through the noises 

jr,iong an(j jr,iat_ -phis acceleration model is simplistic (see [9] for more realistic target 

models) but is a reasonable interceptor-target model in many situations. 

Assume that the state is observed at evenly spaced distinct time instants <o> *ii • • • > *Jb  

Let index k denote the fcth observation corresponding to the time instant t = tk. Consider 

the following observation process 

zk = f(Xtk,w£,wv
k) = R ,J\ - 

\ Rk + Rkw£l 
<% + 

< 
< 

. % _ 

(2.3) 

where Rk = Jx2
k + Vtk, 6k 

= ia-n~1(ytk/
xtk), 

w
ki

w
k are uncorrelated zero-mean Gaussian 

noises with variances o\ and CT| respectively. Note that the observation noise on range 

measurements is assumed to be range dependent. Also, the interceptor velocities can be 

written as follows (see [2]): 

utk = 1 + a2 

1 
Vt.  = 

(utk + avtk) - utk 

{vtk - outk) - vtk (2.4) 
**      1 + a2' 

It is useful to consider a discrete-time representation of the continuous-time state equation 

(2.2) obtained through sampling theory. Let h = tk - tk-x, then using the sample hold 

approximation, the discrete-time state equation, for k — 0,1,... is 

„Afc- Xh or Hk+l    =   e    Xtk + Gtkutk 

Xk+l   =   ÄXk + Gkü>k (2.5) 

where Qk — l/hftk
k+1 wtdt and Xk denotes the discrete-time representation of Xt (likewise 

Gk etc.). The variance of ü)k is 1/h times the variance of ut. The observation process for 

the discrete time model can be written as follows. 

zk = ck(Xk)+nk 

where 

ck = 

Rk 

< r 
and   nk 

' Rkw? ' 
< 
0 
0 

(2.6) 

(2.7) 
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2.1    A Typical Engagement 

A typical engagement is shown in Figure 1. The engagement commences at a distance 

of 5000 m. The interceptor is traveling at a velocity of 1000 ms'1 in a direction 36° 

(measured in a counter-clockwise direction) from the x-axis. The target is traveling 

at a velocity of 660 ms~l in a direction of 120° from the x-axis. Hence, the initial 

conditions are (a&yS,tM) = (0,0,1000cos(36°), 1000sin(360)) and (a#,y2\t#,t#) = 

(5000,0,660cos(120°), 660sin(120°)) where distances are in units of m and velocities are 

in units of ms'1. Through out this paper near collision course geometries are considered 

and no control action is taken by the interceptor. The absence of control action allows a 

simpler analysis of filtering performance. 

1000 m/s 660 m/s 

A ^csi 
5000 m 

Interceptor Target 

Figure 1 (U): Engagement configuration.   The interceptor and target are roughly heading 
towards the same point (but collision does not occur). 

2.2    Observability 

Before proceeding to introduce the extended Kaiman filtering solution to this problem we 

briefly examine the observability of the system defined in the previous section. System 

observability is necessary to ensure the state information needed for the precision guidance 

problem can be estimated from the measurements. Observability is defined as the ability 

to determine the value of the state from the system measurements. For linear systems, 

observability can be tested via the rank of the observability grammian which is defined as 
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follows: 

Go:= 

C 
CA 

(2.8) 

CAN~l 

where C 6 R(MxN'> is the measurement output matrix and A € R(~NxN'> is the state transi- 

tion matrix. Here N, M are the dimensions of the state and output processes respectively. 

If Go has rank N then the system is observable. For non-linear systems, observability of 

the system (in a local sense) at various time-instants can be examined via the linearised 

model, see [11] for details on observability of non-linear systems. It becomes clear when the 

observability grammian is examined for this problem that measurements of the interceptor 

velocity are necessary to ensure observability. The measurement equation (2.6) is a non- 

linear function of the state and linearisation at Xk gives 

Ck   = 
dck{X) 

9X    x=xk 

Xk/Rk Vk/Rk 
-Vk/Rl xk/Rl 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

0 
0 

-1 
0 

0 
0 
0 

-1 
1/(1 +a2) -a/(l + a2) 
a/(l+a2) 1/(1+a2) 

0 0 
0 0 

(2.9) 

With the above Ck, the observability grammian for this problem has rank 8 (ie. is full 

rank). If the interceptor velocity measurements are not available then the grammian only 

has rank 6. This means that the full state vector can not be determined from measurements 

of only the range and bearing. 

3    Extended Kaiman Filter 

Filtering for non-linear systems is a difficult problem for which few satisfactory solutions 

can be found. The sub-optimal approach considered in this section, that works in some 

situations, is based on an extension of the Kaiman filter known as the extended Kaiman 

filter. 
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The extended Kaiman filter is posed by linearisation of a non-linear system. Consider the 

following non-linear system defined for k a non-negative integer: 

Xk+i   =   ak(Xk) + bk(Xk)wk,    Gi?(JVxl) 

**   =  ck(Xk) + vk, Gi?^xl> (3.1) 

where ak{.) G R^Nxl), bk{.) G R{Nxp) and ck{.) G R(
M

*V are non-linear functions of the 

state and wk G R^pxl\ vk G R^Mxll 

Let us define the following quantities: 

.(3.2) ,       dak(X) „       dbk{X) 
Bk = 

r-y dX 

,     r       dck{X) 
ana    uk = 

*=**i*-i dX X=Xk\k-i dX 

Here Ak G R^NxN\ Bk G tiN** and Ck G R^MxN\ 

Let us also introduce matrices Q% and R*k which are related to the covariance matrices 

for noises wk and vk. However, as will be shown later in Section 3.1, the matrices Q% and 

R*k need not equal the actual noise covariance matrices and in fact other positive definite 

matrices are often better choices. 

The extended Kaiman filter is implemented using the following equations: 

Xk\k-i = ak-i(Xk-i\k-i) 

Pk\k-i - Ak-iPk-i\k-iK-i + Bk-iQkB'k-i 

Kk = Pk\k-iC'k [CkPk\k-iC'k + Rk\ 

Xk\k = Xk\k-i + Kk [zk - Cfc(Xfc|fc-i)j 

Pk\k = Pk\k-i-KkCkPk\k-i                                               (3-3) 

These equations are not optimal or linear because Ak and Ck depend on Xk\k^i. The 

symbols Xt|fc_i, Xt-nt-i, Pk]k-i and P*_i|fc-i loosely denote approximate conditional 

means and covariances respectively. 

The extended Kaiman filter presented above is based on first order linearisation of a linear 

system, but there are many variations on the extended Kaiman filter based on second 

order linearisation or iterative techniques. Although the extended Kaiman filter or other 

linearisation techniques are no longer optimal filters, these filters can provide reasonable 

filtering performance in some situations. 
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3.1    Stochastic Stability of the Extended Kaiman Filter 

A key question when applying an extended Kaiman filter to a particular non-linear problem 

is when will the extended Kaiman filter be stable and when will it diverge? Hueristic 

arguments have been used to suggest that if the non-linearities are "small" enough, and the 

filter is initialised well enough, then the filter should be stable (solid results are presented in 

Theorem 1). This hueristic argument has encouraged the use of the extended Kaiman filter 

in a wide variety of signal processing, control and filtering problems. However, without 

any solid stability results, the error behaviour of the extended Kaiman filter needs to be 

examined through testing whenever it is applied [6, 1]. 

Recently, solid stability results have established conditions on the non-linearities and ini- 

tial conditions which ensure that the extended Kaiman filter will produce estimates with 

bounded error [7, 8]. These results answer some of the stability questions surrounding the 

extended Kaiman filter [7, 8]. This section repeats the stability results of [8]. 

Consider again the non-linear system (3.1) defined in Section 3: 

-Xfc+i    =   ^k(Xk) + bk(Xk)wk 

zk   =   ck(Xk)+vk. (3.4) 

Let us define the following quantities 

<p{Xk,Xk)   :=   ak{Xk)-ak{Xk)-Ak{Xk-Xk) 

X(Xk,Xk)   :=   ck(Xk)-ck(Xk)-Ck(Xk-Xk) 

where Xk is some estimate of the state (see Figure 2 for a graphic interpretation of 

if{Xk,Xk)). Also, define the estimation error as Xk\k := Xk - Xk\k. Then the follow- 

ing theorem is presented in [8]. 

Theorem 1 (Theorem 3.1) Consider the nonlinear system (3.1) and the extended Kaiman 

filter presented in Section 3. Let the following hold: 

1.  There are positive real numbers a,c,p,p,q,r > 0 such that the following bounds hold 

for all k>0: 

\\Ak\\   <   3 
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Figure 2 (U): Graphical interpretation of <p(Xk,Xk). 

\\Ck\\ < c 

pi < Pk\k-\ < PI 

q < Ql 

L < R%. (3-5) 

(3.6) 

2. Ak is nonsingular for all fe > 0. 

3. There are positive numbers ev,Kv > 0 such that: 

for Xk, Xk with \\Xk - Xk\\ < ev for all k, where Xk is any estimate of Xk at time 

k. 

4. There are positive numbers ex, KX > 0 such that: 

\\x(Xk,Xk)\\<Kx\\Xk-Xk\\
2 (3.7) 

for Xk, Xk with \\Xk - Xk\\ < ex for all k, where Xk is any estimate of Xk at time 

k. 
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Then the estimation error is bounded with probability one, provided the initial estimation 

error satisfies 

\\X0\\ < e (3.8) 

and the covariances of the noise terms are bounded via Qk < SI and Rk < SI for some 

S,e. 

3.1.0.1    Remark 

1. The proof of Theorem 1 is given in [8]. 

2. This result states that if the non-linearity is small then the EKF is stable if initialised 

close enough to the true initial value. The greater the deviation from linearity the 

better the initialisation needs to be. 

The proof presented in [8] provides a technique for calculating conservative bounds for e 

and S. Although simulation studies suggest that e and «5 can be significantly larger than 

these bounds in some situations, these bounds can be useful in understanding the likely 

performance of a filter. 

We define the following to repeat the bounds presented in [8]: 

e    :=   min(e¥,,ex), (3.9) 

R   :=   K<p + äp-Kx. (3.10) 

Also define the following: 

Knonl     •=    - I 2 lä + äp— I +K£ 1 , (3-11) 

S , ä2c2p2 

p        prf 

Then 

A   :=    1-1/(1 + ^(1^/E)2)- (3J3) 

e = min ( e, — ) (3.14) 
V    tpKnonlJ 

and 
Xe2 

ZpKnoi 
(3.15) 

10 
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3.2    The Extended Kaiman Filter Applied to the Target 
Tracking Problem 

To apply the extended Kaiman filter to this problem we obtain a linear approximation 

for the state equation. We approximate the non-linearity in the driving term as a time- 

varying linear function (that is Ak = Ä and Bk = G(Xfc|fc_i) where Xk\k-! is the one-step- 

ahead prediction of Xk). The measurement equation (2.3) is non-linear in the state and 

linearisation at Xk\k-i gives 

Ck   = 
dck(x) 

dx X=Xk\k-l 

£fc|fc-i/-Rfc|fc-i Vk\k- -i/-R*ifc-i 0 0 

-Vk\k-il R\\k-\ %k\k- -ilRl\k-\ 0 0 

0 0 -1 0 
0 0 0 -1 

0 0 1/(1 + a2) -a/(l + a2) 
0 0 a/(l+a2) 1/(1 +a2) 
0 0 0 0 
0 0 0 0 

(3.16) 

where R^^ = yfx't^ + y'i\k_v 

The extended Kaiman filter can now be implemented using the recursions (3.3) stated 

above. 

3.3    Stability of the Extended Kaiman Filter for Typical 
Configurations 

To demonstrate how the extended Kaiman filter stability results can be applied to this 

target tracking problem consider the typical configuration given in Section 2. Because of 

linear state equations the conditions for stability stated in Theorem 1 simplify to 

*-&(*+'E>+W) (3'17) 
where we have used c = 1, ö = 1, that ev is unbounded and KV = 0. Note that Theorem 1 

does not require bounds on R*k and Q\ in this target tracking problem because the state 

equation is linear. 

A quick examination of (3.17) demonstrates that the stability of the EKF can always be 

ensured by setting r large enough. However, stability ensured by dramatically increasing 

R is at the cost of performance. 

e = mm   e 

11 
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To determine whether stability of the extended Kaiman filter can be ensured for a partic- 

ular initial error value we tested values of ex in (3.17). We investigated stability against 

initial errors in the y position coordinate (assuming no error in XQ). Figure 3 shows the 

values of e achieved for various values of ex (note that this figure shows only the stability 

at the initial time instant and the stability of the filter at later time instants needs to 

be tested separately). From Figure 3, stability of the EKF can be guaranteed for initial 

errors in y less that 180 m. Using (3.17) it can be shown that when yo is known, errors in 

XQ do not cause the EKF to diverge. 

200 

1000 

Figure 3 (U): The initial errors in j/o for which the EKF is guaranteed to converge. 

In Section 5 simulation results demonstrate that the EKF can converge from initial errors 

of 500 m in both axes. These simulations demonstrates that although useful, the bounds 

produced by (3.17) are conservative. 

12 
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4    Implementation Issues 

4.1    Measurement Noise Covariance Matrix 

The stochastic stability results presented above suggest that convergence from a larger 

initialisation set can be guaranteed if the measurement noise covariance matrix is made 

larger than the actual noise covariance. This makes sense particularly when the uncertainty 

in the initial estimate is large. 

The state equation and measurement equations linearisations are valid only for small 

state errors and it makes sense to increase the process and measurement noise covariance 

matrices (for a fixed JP0|0) when the initialisations are known to be poor. Increasing these 

covariance matrices results in an EKF that can allow for larger mismatch between output 

predictions and actual measurements received. But, to obtain good filtering performance, 

the size of covariance matrices should only be increased during the initialisation period. 

In this section we proposed one methodology for modifying the measurement noise matrix 

as 

Rk = R + CkPk\k^C'k (4.1) 

where R is the covariance associated with nk(Xk) and Rk is the modified covariance to be 

used in the EKF. 

Increasing the measurement noise covariance matrix in this way is an ad hoc modification 

and needs to be checked in simulation studies. Simulations presented in the next section 

show that this modification improves the convergence properties of the EKF. 

5    Simulation Studies 

Simulation studies of the extended Kaiman filter were performed using Matlab™. Both 

the effect of initial errors and the effect of engagement configuration on performance of the 

EKF are examined. The simulations were performed with a sampling period of 0.001 s. 

In the below simulations the velocities of the interceptor and target are 1000 ms'1 and 

660 ms-1 respectively. 

We are interesting in the error performance of the EKF with respect to position, velocity, 

the perpendicular vector, and acceleration. However, the estimation performance of the 
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filter with respect to the all the state variables is closely coupled to the position error per- 

formance. Hence, most of the results presented in this section show only the position error 

performance. Similar estimation performance was obtained for the other state quantities. 

5.1    The Typical Engagement 

Consider the engagement shown in Figure 1. Assume that the target's position is measured 

indirectly via range and bearing measurements (with range noise variance of 0.25Rk m , 

where Rk is the range at time k, and the angle noise variance of 0.25 rad2) and assume 

that the target is non-accelerating. Assume that the initial estimate of the target position 

is (5500,500) m and that velocity errors of 5 ms-1 in both x and y directions are present. 

The EKF is then used to estimate the state of the target. 

Figure 4 shows a plot of both the target and interceptor trajectories as well as the inter- 

ceptor's estimate of the target's position. The initial position error quickly reduces and 

after 4.39 s, when the interceptor and target are 71m apart (which is the closest distance 

achieved), the error in the estimated target position is 0.67m. 

3000 

2500 

2000 

>.150O 

1000 

500 

— Interceptor 
 Target 
— Estimated Target 

6000 

Figure 4 (U): Estimation of Target Position. 

The velocity estimation errors are shown in Figure 5 and the perpendicular velocity esti- 
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mation errors are shown in Figure 6. These two figures demonstrate the non-linear nature 

of this filtering problem. Changes in the engagement configuration, over time, change 

the observability of various states. It is difficult to draw definite conclusions about the 

performance of the filter from the velocity estimation errors without considering the po- 

sition estimation errors and the various covariance matrices. Because of this difficulty, 

position estimation errors are easier to use as a basis for comparison (rather that velocity 

estimation errors). 

In the next section a more detailed examination of the filter's performance is given. 

10' 

10"    7 

I io- 

10' 

10 

■ X Direction 
• Y Direction 

ife    HliM   1 
fSiift it Is  ? 

--■*«' \;j   si- ' 

500 1500   2000   2500   3000   3500   4000   4500 
Time (ms) 

Figure 5 (U): Estimation of Target Velocity Vector. 

5.1.1    Effect of Errors in the Initial Position Estimate 

In this simulation study the effect of initial errors (in position) on the performance of the 

EKF is examined. 

Consider the first 4.5 s of the engagement shown in Figure 1. Observations were generated 

with measurement noise variances of O.OIRk m2 and 0.01 rad2 for the range and bearing 

measurements respectively. 

To evaluate the sensitivity of the EKF to initialisation, the EKF was applied to the gener- 
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10' 
0    500    1000   1500   2000   2500   3000   3500   4000   4500 

Time (ms) 

Figure 6 (U): Estimation of Target Perpendicular Velocity Vector. 

ated observations when initialised with x and y position errors in the range (—2500,2500) m 

while initial velocity estimates errors were fixed at 5 ms~l. 

For each initialisation condition, the performance of the EKF was measured as the time 

average of the position estimation error over the last 20% of the engagement time. Ten 

runs for each initialisation error were performed and average error performance over these 

ten runs is shown in Figure 7. 

Figure 7 shows two surfaces representing the performance of the EKF with and without 

the covariance matrix modification described in Section 4. The surfaces show the average 

final position error for different initialisation errors. The fiat surface is the average error 

performance of the EKF with the modified covariance matrix and the peaked surface is 

the average error performance of the standard EKF. 

From these curves it is clear that initialisation errors significantly influence the performance 

of the standard EKF. The influence of initialisation errors can be reduced by increasing 

the size of the noise covariance matrix (particularly during the initial stages) to ensure 

stability of the filter. The performance of the EKF with modified covariance matrix is 

superior to the standard EKF except when the initial errors are small. 
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Figure 7 (U): Error performance for various initialisations.   The flat curve is the EKF 
with a modified covariance matrix and the peaked curve is the standard EKF. 

5.2    Effect of Configuration on Estimation 

The engagements shown in Figure 8 were simulated to examine the effect of engage- 

ment geometry on the performance of the EKF (without the modified covariance matrix). 

Eleven separate configurations where considered; those corresponding to the interceptor 

approaching the target from angles between -90° to 90° in 15° steps. For each config- 

uration the engagement was simulated for 4.5 s with the simulation ending with a final 

separation of 100 m between interceptor and target. 

For each configuration, the filter was initialised with 36 different initial errors in position 

(placed every 10° around a circle of radius 500 m centered at the initial target position). 

The initial error in both the velocity and acceleration was assumed to be zero. Using the 

same noise sequences, wk and vk, data was generated each of the 11 configurations and 

then the EKF was applied to this data using each of the 36 possible initialisations. This 

process was repeated ten times with ten noise sequences (ie. the EKF was applied 3960 

times). 

For each configuration, the average error over the last 20% of the engagement was averaged 
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Figure 8 (U): Various engagement configurations. 

over all 36 initialisations and then averaged over all 10 runs. The average x, y and total 

position error are shown against the configuration angle in Figure 9. 

Figure 9 shows the effect of engagement geometry on the error performance of the filter. 

The average error in the x (or y) coordinate of position estimate increases (or decreases) 

with angle away from 0°. Overall, the total position error decreases with angle away from 

0°. 

The engagement geometry also influences the ability of the filter to estimate the velocity 

vectors (including the perpendicular vector). In fact, estimating various components of 

the velocity vectors is very difficult in some configurations. Simulation results examining 

velocity estimates have not been presented because other effects (including errors in posi- 

tion estimates) are highly coupled to these velocity errors. The effect on velocity estimates 

is best understood by considering the flow through effect of position errors together with 

the observability grammian. 
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Figure 9 (U): Error performance for various engagement geometries. 

6    Conclusions 

This paper examined the used of the extended Kaiman filter for estimating the target state. 

The target state estimation problem considered in this paper is different from the usual 

estimation problem because in this case it is necessary to estimate information in addition 

(in particular the perpendicular vector) to the usual cartesian position and velocity. An 

extended Kaiman filtering solution for this problem is presented and simulation studies 

are performed that demonstrate the stability and error performance of filter. 
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